
CrossTalk—November/December 2014 21

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

they have the greatest opportunity to introduce source code
compromising the systems confidentiality, integrity, or availability.
Software developers can expose assets accidently, by introduc-
ing a defect or intentionally through the introduction of malicious
functionality. Defects have many causes, such as oversight or
lack of experience with a programming language, and are a
normal part of the development process.

Development processes are the activities, constraints,
resources, and techniques to produce an intended output [4].
Software developers perform the daily development activities
habitually; they know their jobs, so why question whether there
are flaws in the development process? The answer is that team
members have their own view of the process, based on what is
important to them personally. For example, someone’s financial
circumstances may have changed or other personal hardships
could result in an angry, vulnerable, or distracted team member.
Many organizations conduct background checks, credit checks,
and drug tests when hiring new employees as part of the com-
pany’s security policy, but the company may not perform periodic
background checks. Developers need to understand that as
organizations uses locks on their doors to protect their physical
property; there is a need to conduct periodic security screenings
to protect intellectual property and financial assets from those
with the greatest access. Although these actions are intrusive,
they serve to sustain a secure environment, provide stability
through structure, and reduce risk.

During development of a software application, there are
many opportunities to introduce security exposures. To address
these exposures, many researchers recommend enhancing an
organization’s QA program. One frequent recommendation is
expanding the inspection practice by introducing a checklist for
the various exposures provided by the programming languages
[3] [5]. Items added to a security inspection checklist typically
include functions such as Basic’s Peek () and Poke () func-
tions, C’s string copy functions, exception handling routines, and
programs executing at a privileged level. Functions like Peek()
and Poke() make it easier for programmers to access memory
outside of the program, but a character array or table without
bounds checking produces similar results. A limitation of the
language specific checklist is each language used to develop
the application must have a checklist. For some web applica-
tions, this could require three or more inspection checklists,
and this may not provide safeguards for all the vulnerabilities.
Static analyzers, such as the Software Assurance Metrics And
Tool Evaluation (SAMATE) research, sponsored by the National
Institute of Standards and Technology (NIST), is an approach to
automating some of the objectives associated with an inspec-
tion checklist, but static analyzers have a reputation for flagging
source statements that are not actually problems [6]. Using
a rigorous inspection process as a safeguard identifies many
defects, but does not adequately protect from exposures due
to malicious functionality. An inspection occurring before the
source code is placed under configuration control provides
substantial exposure. In this situation, the developer simply adds
the malicious functionality after the source code passes the
inspection or provides the inspectors a listing without the mali-
cious functionality.

Madeline Wright, MCTD
Dr. Carl Mueller, Texas A&M

Abstract. The goal of this paper is that configuration management is a simple
and cost effective method to secure the development environment without im-
peding innovation, creativity, or schedule. Software development is a business,
and it is reasonable to assume both developers and customers want systems
that are protected because there will always be attempts to gain access to
software and the data/information residing in the computer systems.

Locking Down the
Software Development
Environment

Introduction
Software security is to prevent the world from harming the

system, malicious or unintentional, [1] and encompasses the
ability to prevent, detect, and react to malicious indicators. Many
security analysts view external threat-agents as the primary
source of harm. However, the greatest risk to any system is from
those who are developing the system. Developers introduce
security exposures either maliciously or unintentionally into the
system. Mitigating these risks requires security analysis and an
investigation of all vulnerabilities in the Software Development
Life Cycle (SDLC) models. Investigating the vulnerabilities for all
of the SDLC models is extremely labor intensive, but there are
three areas common to most models: Programming person-
nel, Configuration Management (CM) practices, and Quality
Assurance (QA) practices. Each area of the SLDC reviewed
emphasizes the difference between secure coding and securing
the environment by reviewing threat agents and threat exposure,
assessing configuration management’s role in securing the
environment, and finally, discussing methods to monitor for mali-
cious intent with lessons from Stuxnet and the Heartworm Bug.
The authors look at the SDLC from a lens that strives to guide
software teams to implement a comprehensive security policy to
make penetration of the system’s information security perimeter
more difficult [2].

Programmers as Threat Agents
Microsoft reports more than 50% of the reported security

defects are introduced in the design of a component [3] and
this is critical to looking at where the threats exist and oppor-
tunities for threat exposure in the in the software development
environment. Microsoft’s finding suggests both designers and
programmers are threat agents in the development environment.
According to Microsoft’s data, designers and programmers
introduce vulnerabilities into an application; it is therefore ap-
propriate to identify all of the software developer roles (analysts,
designers, programmers, testers) as potential threat-agents.
Viewing software developers as threat-agents should not imply
the individuals filling these roles are careless or criminal, but

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Locking Down the Software Development Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Operational Test Command ,Mission Command Test Directorate
(MCTD),Fort Hood,TX,76544

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The goal of this paper is that configuration management is a simple and cost effective method to secure the
development environment without impeding innovation, creativity, or schedule. Software development is a
business and it is reasonable to assume both developers and customers want systems that are protected
because there will always be attempts to gain access to software and the data/information residing in the
computer systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

22 CrossTalk—November/December 2014

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

Programming languages and development processes offer a
number of opportunities to expose assets; but many of the tools,
such as debuggers and integrated development environments,
can expose an asset to unauthorized access. Many development
tools operate at the same protection level as the operating sys-
tem kernel and function well as a worm to deposit a root kit or
other malicious software. Another potential exposure, not related
to programming languages, is testing with ‘production data’.
Using ‘production data’ may permit access to information the
developers do not need to know. Now that we have addressed
some areas to apply QA, we will look at the next step, address-
ing vulnerabilities and back doors.

Software developers address software vulnerabilities by
loading the latest virus definitions and implementing all of the
security guidelines [7], but if the environment is not secure, the
product is still at risk for back doors or malicious intent resulting
in security breaches. Acknowledging the software development
environment’s threat agents are often the software engineers
is a major step in reviewing security processes. There is a ten-
dency to focus on the existing vulnerabilities and threats since
this provides managers and customers a sense that all security
bases are covered. The development environment permits many
opportunities to discover a business’s processes and, in turn,
their vulnerabilities, and how we protect those process leads to
our next topic, Configuration Management.

Configuration Management
One tool for securing the environment is auditing through CM

so the development team can focus on building functionality, not
managing the change [8]. Software CM (SCM) is the traditional
technique for controlling the content of deliverable components
and is an essential element of a robust security policy [9].
Figure 1 illustrates a traditional unit-level development process
indicating possible points of vulnerability. As illustrated in Figure
1, a developer receives a change authorization to begin the
modification or implementation of a software unit. Generally, the
“authorization” is verbal and the only record of the authorization
appears on a developer’s progress report or the supervisor’s
project plan. To assure another developer does not update the
same source component, the developer “reserves” the necessary
source modules. Next, the developer modifies the source code
to have the necessary features. When all of the changes are
complete, the developer informs the supervisor who assembles
a review panel consisting of three to five senior developers and/

or designers. The panel examines the source code to evaluate
the logic and documentation in the source code. A review com-
mittee recommends the developer make major changes to the
source code that requires another review, minor changes that
do not require a full review, or no changes are required. It is at
this point in the development process where the source code is
the most vulnerable to the introduction of malicious functionality,
because there are no reviews or checks before the software is
“checked-in.”

Another limitation of inspections is that the Agile method-
ology recommends formal inspections and Scrum uses pair
programming and testing based on the Backlog list to deter-
mine what functionality is priority for developer resources [5].
Using inspections as the primary safeguard from development
exposures limits the cost savings promised by Agile develop-
ment methodologies and does not provide complete protection
from a developer wishing to introduce malicious software. Of
the six areas of CM, the two areas having the greatest effect
on security are configuration control and configuration audits.
Version control tools, such as Clearcase and CVS, provide many
of the features required by configuration control. Most version-
control systems permit anyone with authorized access to check
source code “in” and “out” without an authorized change request
and some do not even track the last access to a source module.
However, in a secure environment, a version control system
must integrate with the defect tracking system and record the
identification of the developers who accessed a specific source
module. Integrating the version control system with the defect
tracking system permits only the assigned developer to make a
specified change and access the related source code. It is also
important for the version control system to track the develop-
ers who access the code – traceability. Frequently, developers
copy source code from a tested component or investigate the
approach used by another developer to address a specific issue
in their work, or need access to read source modules they are
not maintaining. This access provides an opportunity for insiders
to research and learn how to introduce malicious functionality
into another source module. By logging source module access,
security personnel can monitor access to the source code. Con-
figuration audits are the second management technique making
a development organization more secure [10]. Some regula-
tory agencies require audits for safety critical applications/
high reliability applications to provide an independent review of
the delivered product. An audit in a high security environment
addresses the need to assure the delivered product’s software
does not expose the organizational assets to risk from either
defects or malicious functionality. To increase confidence that
the delivered software does not contain defects or malicious
functionality, auditors should assure that the test cases provided
100% coverage of the delivered source code. This is particu-
larly important with interpreted programming languages, such
as Python or other scripting languages, because a defect can
permit the entry of malicious code by a remote use of the soft-
ware. Auditors could adopt the approach of selectively re-testing
configuration items with the unit-test data to assure the results
from the re-test match those produced in the verification and
validation procedure, and that all of the statements in the code
are executed.

Change	
Authorization

Changes	
Required

Version	
Control	
System

Check-‐in	 Source	
Code

Inspection

Implement
Change	 (s)

Check-‐out
Source	 Code

Point	 of	
Maximum	
Exposure

No

Yes

	 Figure 1. Traditional Unit Level Development Process

CrossTalk—November/December 2014 23

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

Adopting the recommendation for a stronger CM process
modifies the typical unit-level development process, illustrated
in Figure 1, to a more secure process illustrated in Figure 2. In
the more secure process illustrated in Figure 2, a formal change
authorization is generated by a defect tracking system or by the
version control system’s secure change authorization function.
Next, a specified developer makes the changes required by
the change authorization. After implementing and testing the
changes, the developer checks all of the artifacts (source code,
test drivers, and results) into the version control system. Check-
ing the artifacts automatically triggers a configuration audit of
the developer artifacts. Auditors may accept the developer’s
changes or create a new work order for additional changes.
Unlike the review panel, the auditors may re-test the software
to assure adequate coverage and that the test results match
those checked in with the source code. Making this change to
the development process significantly reduces the exposure to
accidental defects or malicious functionality because it verifies
the source code deployed in the final product, along with all
supporting documentation.

CM should be viewed as important to keeping the develop-
ment team informed of code changes, to include who made the
code changes, and to indicate when those code changes were
made [11]. The goal is to inform and challenge developers to
merge security and process to prevent the introduction of mal-
ware by threat agents through safeguards to strengthen existing
processes. CM helps keep the cost of security low-cost with the
basics of version control and audit. Management will be pushing
the team to deliver and move on to the next project, software
developers need something practical that provides structure
while not restricting innovation and creativity or impeding the
schedule. CM should play a major role in securing the software
development environment because it assists with the discovery
and prevention of malicious intent by threat agents, whether the
agents are hackers, malware coders, or insider threats. Next, we
will discuss how to establish QA in the SLDC and use lessons
from external threats to emphasize the importance of QA.

Quality Assurance and Lessons from External Threats
Another element of a robust development security policy is

QA in the SLDC through the separation of the development and
production systems. Developing software in the production
environment exposes organizational assets to a number of
threats, such as debugging tools or simply writing a program to
gain unauthorized access to information stored on the system. A
worm implanted on computers or portable flash drives that
might eventually be connected to the targeted network, such as
the Stuxnet worm. The level of sophistication of the Stuxnet
worm could only come from insider knowledge of the computing
architecture and daily operations. Another important point about
the Stuxnet worm is that it targeted a development tool and the
tool introduced the malicious functionality. For a secure
development environment, testing must not only look at the
vulnerabilities of the past, but also conduct what-if analysis for
all of the tools and software being used for the project develop-
ers have to think like a hacker because hackers work to reverse
engineer an application to make it perform what they want.
Since Stuxnet was engineered brilliantly as described by

personnel from Kaspersky Lab [12], developers must take
preventive action. Code can have a time delay or malware can
remain dormant, or malware may be hidden in a library or service
routine, all actions an insider could insert for activation after the
software is deployed. The Heartbleed Bug was a software
defect developers closed in April 2014 with a patch to the
OpenSSL code [13]. The OpenSSL software is, as the name
implies, open source, a result of many developers coding
beginning in 1998 using the C programming language to build
crypto services. OpenSSL is used widely both on the Internet
and in firmware [13], further delaying the ability of many
organizations to implement the patch across all platforms for the
HeartBleed bug. There will be damage from the HeartBleed bug
because of the types of data possibly extrapolated from
websites, i.e. certificates, user names and passwords, messages,
emails, and documents. Using open source code does not
preclude the development team from checking that the code
meets QA standards. Code must perform its intended function
and not introduce security vulnerabilities. Identifying all of the
potential exposures and creating safeguards provides a
significant challenge to the security analysts; but by analyzing
the development process, it is possible to identify a number of
cost effective safeguards. Configuration management, pairwise
coding, and vulnerability checks are all simple security safe-
guards that could have prevented the HeartBleed bug. Security
breaches have made the news headlines and consumed labor
hours for patches and corrective actions, a result of attacks on
software services by software developers who have become
insider threat agents. The insider threat is real, whether it is from
former employees who have maintained possession of their
identification cards or contracted National Security Agency
(NSA) employees having access levels exceeding their authori-
zation, the insider can upend all of a development’s team effort.
Social engineering in the case of Stuxnet [14] and other worms
prompted the government to ban USB drives, and these
examples continue to prove that securing the environment is the
only option. Give hackers a face; they are thieves with an
objective to gain access into a software system for which they
do not possess the credentials to access or possess. Locking
down the environment means the owners of the SDLC are a
step ahead of the criminals because they employed QA for each
step in the process. For example, developers have to begin to

Change	
Authorization

Changes	
Required

Version	
Control	
System

Configuration	
Audit

Check-‐in
Source	 Code

Implement	
Change

Check-‐out
Source	 Code

Yes

	 Figure 2. Secure Unit Development Process

24 CrossTalk—November/December 2014

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

design tests beyond code issues and look at routine service
calls to ensure the code does not introduce a common vulner-
ability for exploitation upon deployment. Consider whether
Bluetooth is enabling cyber espionage. Historical data from the
credit card industry has proven Bluetooth as a lucrative
technology for cyber thieves and should be monitored to ensure
the interfaces do not contain malware. Programs should be
designed to perform cyber surveillance on the malware so
programs get routine reports on data sent to servers and service
routines – trends and analysis can point to unusual activity. Agile
takes advantage of the cross-functional teams with both
developers and testers to improve the quality of the software
[15]. This teaming could be used in any type of development
model to encourage collaboration and feedback. The feedback
loop and reinforcement of using the QA and CM processes,
manual or automated, traces changes and makes changes
visible to everyone on the team [8]. Visibility and sharing of
information in the Agile Process make it difficult for insiders to
bypass the CM process and could even prevent someone from
attempting espionage. For example, if a developer wanted to
add a logic bomb and deploy it six months later, he or she might
reconsider if they knew the code would be peer reviewed [16]
[17]. If CM personnel compare lines of code from the previous
version to a new version, the records of code submissions are
traceable to an individual, and this step could curtail fraudulent
activity. Waterfall and its recordkeeping rigor remove the

anonymity, but testing at the end still provides
the insider opportunities to hide malicious code
during the rush to meet the delivery schedule.
So how does the development team know the
code deployed is the code the team wants to
deploy? Adherence to code changes being
checked in to CM, and verification, i.e. testing,
comparing the number of lines of code to the
tested lines of code is critical to documenting
the software baseline. Teams must follow the
process and not allow a programmer to check
in code without an audit trail. Processes
remove the human-in-loop factor, i.e. relation-
ships between the developer and the CM Lead,
ensuring processes apply to everyone. The
process requires buy-in at all levels because
security is the responsibility of the development
team. Accountability in the software develop-
ment environment maintains the integrity of the
software. If developers follow the CM process,
then there is traceability. Development teams
must not forfeit traceability and take shortcuts
– the process is there to help protect the
product. Not following the process opens the
software development environment to vulner-
abilities. Statistics from the Computer Emer-
gency Response Team/Coordination Center
(CERT/CC) indicates well-known vulnerabili-
ties are responsible for 75% of the security
breaches; leaving 25% a secure development
model will not address [12]. It sounds simple,

map to known vulnerabilities to improve your design and let this
become a new model to assist the testers, QA teams, and
automated tools. Shirazi’s proposal lists 25 common vulnerabili-
ties, such as buffer overflow, integer overflow, command
injection, SQL injection, cross-site scripting, and illegal pointer
values, along with countermeasures to avoid the vulnerabilities
[18]. Many developers could view this model as too prescriptive,
because it assumes if most programmers followed basic secure
programming principles, then the environment would be locked
down. Some would also view this model as useful to train
inexperienced developers or to standardize knowledge across
the organization. Any list can become a useful checklist, but a
model is a process that can be repeated to impose consistency
on the output. Consider how software development teams
moved from Waterfall to Agile; the process selected by the team
depends on the environment and business need. Additionally,
change has to be significant to encourage and sustain change
[14]. Secure software development does not require a new
model, but the phases of the existing models must address
security and the system architecture in the test and QA phases.
Another proposed secure software development model is to
build test tools based on ratios of predicted vulnerabilities [15].
Any model relying on reported vulnerabilities or associations
attempts to predict future vulnerabilities does provide indicators
[19], but until the model’s variables are validated, caution must
be used. These proposals help to code securely, but still lack in

http://www.navair.navy.mil

CrossTalk—November/December 2014 25

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

providing a means to locking down the software environment
[14]. While past vulnerabilities do assist with inspection and
testing [16], [17], this is still a reactive model. Code churn is
expected during development, but sound CM practices can
manage the change. Additionally, there are many secure
development lifecycle models (SDL), for example, Microsoft’s
SDL is attempting to train new developers. This makes the
development team aware of the pitfalls of functional but
unsecure software [20], but this still does not secure the
environment, and training does ensure the developers under-
stand secure coding. Secure coding does not prevent malicious
intent within the environment. As one technology manager
stated, developers’ mistakes rarely affect them directly because
the defects are not discovered until the operations phase.
Correcting defects once software is deployed affects the
operations budget, not the development budget [21]. Some
security professionals attempt to scare the developers with
doom and gloom about security and privacy problems, as well as
describing how best to ensure compliance to regulations
through secure coding [22]. There should be an emphasis on
information sharing; inform the development teams and
everyone in the company about how much it costs in operations
and marketing to clean up the environment if malware is not
prevented [23] [24]. Steps such as training, meetings to gain
buy-in, rewards to developers who embrace methods that
secure the environment, as well as reprisals for those who do
not adhere to doing their part to secure the environment are
necessary to instill a culture change so everyone values
securing the environment. Some notable examples of the threat
agent’s work were the use of social engineering and develop-
ment tools in the case of Stuxnet and Heartbleed Bug. Both
exploits resulted in havoc and further degraded the public’s
ability to trust the security of software. Developers must take ac-
tion by viewing the software development environment as an
entity within the SLDC that requires a rigorous auditing method.
Development is the stage in the SLDC is when the software is
most vulnerable to threat agents so there has to be a focus on
gaps in the development process. The company developing
software does not discharge its responsibility after its deploy-
ment; the creation, however perceived, remains a product that is
company’s responsibility until the software is retired.

Summary
Software development is a business, and it is reasonable

to assume that customers want systems that are protected
against known vulnerabilities. The insider threat is real, whether
it is from former employees who have maintained possession
of their identification cards or contracted National Security
Agency (NSA) employees having access levels exceeding their
authorization, the insider can upend all of a development’s team
effort. Social engineering in the case of Stuxnet [14] and other
worms prompted the government to ban USB drives, and these
examples continue to prove that securing the environment is the
only option. Software developers can address software vulner-
abilities, load the latest virus definitions, and implement all of the
security guidelines [7], but if the environment is not secured, the
product is still at risk for back doors and malicious intent that

lead to security breaches. Security breaches result in damages
to customer and developer reputation. Only a comprehensive se-
curity policy focusing on personnel, operations and configuration
management can provide the safeguards necessary to secure
an organization’s assets from cyber risk factors [2]. Following all
of these recommendations will not guarantee the security of the
software development environment. There are always new vul-
nerabilities and vulnerabilities from social engineering. However,
using reoccurring security checks, separating developers from
production systems and data, controlling media, training devel-
opers, a culture of awareness, and rigorous configuration man-
agement practices should make penetration of your information
security perimeter more difficult. It is also necessary to conduct
a periodic review of development tools and configuration man-
agement practices, as well as a review of the security standards
because threat agents will adapt to any safeguard that does
not adapt to new technology. It makes good business sense to
allocate resources proportionately across the development and
maintenance phases to prevent malicious intent, versus stopping
the current work and re-directing work to address malicious
intent. Technology changes, customers’ business changes, the
market changes, and management changes are all drivers that
will influence and determine how the customer will assess the
quality of the final software product.

Although this paper does not strive to develop any new meth-
odologies, models, processes, or test tools, each area reviewed
in the SLDC emphasized the difference between secure coding
and securing the environment with a focus on the effectiveness
and simplicity of Configuration Management in keeping the cost
of security low-cost with the basics of version control, quality
assurance, and auditing. Any security policy focusing on one as-
pect of the process will not succeed - the software development
environment is complex, encompassing people, systems, and
software. Since management will be pushing the team to deliver
and move on to the next project, software developers need
something practical that provides structure while not restricting
innovation and creativity or impeding the schedule. In that vein,
the authors of this paper hope to have contributed.

26 CrossTalk—November/December 2014

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

Madeline Wright has more than 15 years of experience
in software testing and evaluation of mission command
systems through test planning, resource management, and
collecting data to support operational tests She currently
serves as senior test manager for the Mission Command
Test Directorate (MCTD), US Army Operational Test Com-
mand (OTC), a test center for the US Army Test and Evalua-
tion (ATEC) Command. Mrs. Wright gained system of system
test experience at U.S. Army Communications-Electronics
Command’s (CECOM) Whitfill Central Technical Support
Facility (CTSF), supporting the Electronic Proving Ground
(EPG), to lead the interoperability testing of new software
baselines for the Army’s Chief Information Office/G-6. Mrs.
Wright’s MCTD team also has the responsibility to manage
testing as system under test (SUT) headquarters for OTC
during the Network Integration Evaluation (NIE) events;
this includes mission command systems, network capabili-
ties, and radios that are planned for fielding to keep the
Warfighter with technology upgrades. Mrs. Wright holds a
BA with a major in Computer Information Systems and an
MBA from Tarleton State University – Central TX, as well
as two Master Certificates from Villanova University in Six
Sigma Green Belt and Lean Six Sigma (LSS). Mrs. Wright is
Level III certified in Information Technology by the Defense
Acquisition University (DAU) and she is a member of the
Army Acquisition Corps. Mrs. Wright is working towards
her DAU Test and Evaluation certification. Her publications
include abstracts/presentations at the 26th and 27th NDIA
Conferences. Mrs. Wright lives in Harker Heights, TX with
her husband of 27 years, Charles, a retired Army NCO. The
Wrights have two daughters, Charlene who serves with
the Navy, and Jamilla, who lives in Dallas, TX. Mrs. Wright
is pursuing a Computer Science/Software Engineering
degree with TAMU-CT prior to pursuing a doctorate as part
of her continuing education. Mrs. Wright enjoys family time
and traveling. She supports the Killeen Food Bank with food
drives and raising funds for scholarships as part of her du-
ties as President of the Delta Mu Delta Zeta Lambda Chap-
ter at Texas A&M University – Central Texas (TAMU-CT).

Phone: 254-286-6300 ext. 6302
E-mail: madeline.b.wright.civ@mail.mil

Carl J. Mueller, Ph.D., CISSP. Dr. Mueller is an assistant pro-
fessor in the Department of Computer Information Systems,
TAMU-Central Texas in Killeen. He received is initial training
in computer science from Marine Corps Schools Quantico,
and later earned a PhD from Illinois Institute of Technology.
Dr. Mueller has over 9 years of teaching experience and more
than 35 years of industrial experience specializing in develop-
ing and testing safety critical/high reliability applications
(medical devices, telephony, and other applications).

Phone: 254-519-5400
E-mail: muellercj@ct.tamus.edu

ABOUT THE AUTHORS REFERENCES
1. C. W. Axelrod, Engineering Safe and Secure Software Systems, Norwood, MA:
 Artech House, 2012, p. 349.
2. M. Mushi and J. Bakari, “Security in In-House Developed Information Systems:
 THe Case of Tanzania,” Systemics, Cybernetics and Informatics, vol. 10, no. 2,
 pp. 1-5, 10 2012.
3. N. Davis, W. Humphre, S. J. G. Zibulski and G. McGraw, “Processes for Producing
 Secure Software: Summary of US National Cybersecurity Sumit Subgroup Report,”
 IEEE Security and Privacy, vol. 2, pp. 18-25.
4. S. L. Pfleeger and J. M. Atlee, Software Engineering Theory and Practice,
 Prentice Hall, 2010.
5. M. Beedle and K. Schwaber, Agile Software Development with Scrum,
 Upper Saddle River, NJ: Prentice Hall, 2002, pp. 1-158.
6. “SAMATE - Software Assurance Metrics and Tool Evaluation,” 2014.
7. H. Shahriar and M. Zulkernine, “Mitigating Program Security Vulnerabilities:
 Approaches and Challenges,” ACM Computing Surveys, vol. 44, no. 3, pp.
 11.1-11.46, 6 2012.
8. M. E. Moreira, Adapting Configuration Mangement for Agile Teams:
 Balancing Sustainability and Speed, Hoboken, NJ: Wiley, 2010, p. 303.
9. A. Leon, A guide to software configuration management, Artech House, Inc, 2000.
10. N. R. Nielsen, “Computers, security, and the audit function,” in Proceedngs of the
 May 19-22, 1975, National Computer Conference and Exposition, Anaheim, CA, 1975.
11. H. R. Berlack, Software Configuration Management, New York: Wiley, 1992.
12. D. Kushner, “The real story of stuxnet,” IEEE Spectrum, vol. 50, no. 3,
 pp. 48-53, 2013.
13. J. Lyne, “How Hearbleed Happened, The SNA and Proof Heartbleed Can
 Do Real Damage,” 2014.
14. I. Porche, S. McKay and J. M. and Sollinger, A Cyberworm That Knows No
 Boundaries, Santa Monica: Rand Corp, 2011.
15. J. L. Cooke, Everything You Want to Know About Agile: How to Get Agile Results in a
 Less-than-agile Organization, Ely, Cambridgeshire: IT Governance, 2012.
16. R. L. Jones and A. Rastogi, “Secure Coding: Building Security into the Software
 Life Cycle,” Information Systems Security, pp. 29-39, 11/12 2004.
17. V. O. Safonov, Using Aspect-Oriented Programming for Trustworthy Software
 Development, Hoboken, NJ: Wiley-Interscience, 2008.
18. H. M. Shirazi, “A New Model for Secure Software Development,” International
 Journal of Intelligent Information Technology Application, vol. 2, no. 3,
 pp. 136-143, 2009.
19. Y. Shin, A. Meneely, L. William and J. A. Osborne, “Evaluating Complexity, Code
 Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities,”
 IEEE Transactions on Software Engineering, vol. 37, no. 6, pp. 772-787, 2011.
20. P. C. Jorgensen, Software Testing: A Craftsman’s Approach, Boca Raton:
 Auerbach, 2008.
21. D. Bradbury, “Secure coding from first principles,” 8 4 2008. [Online].
22. S. Stirling and J. Rainsberger, JUnit Recipes: Practical Methods for Programmer
 Testing, Greenwich, CT: Manning, 2005.
23. M. U. A. Khan and M. Zulkernine, “On Selecting Appropriate Development Processes
 and Requirements Engineering Methods for Secure Software,” 33rd Annual IEEE
 International Computer Software and Applications Conference, pp. 353-358, 2009.
24. M. Dawson, D. N. Burrell, E. Rahim and S. Brewster, “Integrating Software
 Assurance into the Software Development Life Cylce (SDLC),” Journal of
 Information Systems Technology & Planning, vol. 3, no. 6, pp. 49-53, 12 2010.

mailto:madeline.b.wright.civ@mail.mil
mailto:muellercj@ct.tamus.edu

